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Task Formulation Method Results

Dataset

Challenges

Unseen Objects
• Vast number of categories
• Limited synthetic models
• Ambiguous border
• Transparent parts
• Plastic wrapper

Discrete frames
• Caused by heavy occlusion
• Drastic appearance change
• Large movement between frames
• Little information from context

Synthetic Data (train & val) Real Data (test)
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• Multi-frame attention 
• On object queries 

from different frames
• Inside decoder block
• Efficient inter-frame 

reasoning

uA cluttered shelf contains 
diverse objects

uobjects may be rearranged
ucamera may be occluded
uThe goal is to pick an object 

based on its given order 
index in the bin.

1st object 2nd object 3rd object 4th object

𝑇: num of frames
𝐾!: num of objects  

• Hungarian matching 
• Embeddings for 

tracking 
• From each frame
• Disentangles tracking 

from detection
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10k sequences
2 frames for each sequence

2k sequences
15 frames for each sequence

44 sequences of bins
220 images in total

GoogleScanned objects
~900 for train, ~100 for test

~ 150 real objects
manual annotation

20 sequences
280 images in total

• Comparison with STOA VIS methods
• Train on synthetic data and test on real data
• All using RN50 backbone with same number of 

iteration

• Ablation study on multi-frame attention layer
• Frame attention layer can boost performance by 
∼5%

82 trials, involving >100 objects 

• Better performance handling Sim2Real Gap
• Train on synthetic and test on synthetic and real

Real Robot Experiments
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